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Cyclohexanone (C,H,,O) reacts with Os,(CO),, in refluxing decane to give 
H,OS&~-C,H~O)(CO), , formed by double metallation (oxidative addition) at an 
or-CHz group of the ketone. Structurally similar products from phenol, phenyl- 
acetaldehyde or other aldehydes (described earlier) and from cyclohexenone are 
derived by reaction with 0s3(CO)i2 or H20ss(CO)ro. 

Both aldehydes and ketones can give triosmium clusters derived from OSAKA 
or H20s3(CO),,-, in which both hydrogen atoms of an wCH, group are trans- 
ferred to the metal atoms, however, the initial hydrogen transfer is from the 
CHO group for aldehydes and from the alkene group in the case of cyclo- 
hexenone. Triply-bridging ligands X in H20s3(X)(CO)9 with a carbon atom 
bridging two OS atoms with an organic carbonyl coordinated through 0 to the 
third OS atom of the cluster appear to be particularly favourable as they may be 
formed in various ways. 

As an example, PhCH,CHO reacts slowly with OS,(CO)~~ (refluxing xylene, 
1’7 h) to give HOs3(~2-PhCH2CO)(CO)n-, (1) (12%), the Al3 quartet for the CHz 
in the ‘H NMR spectrum indicating that the I_C* -acyl ligand is locked as such and 
does not interchange between the two osmium atoms it bridges. Thermolysis of 1 
(nonane, 15O”C, 5 h) gave complex 2 H,0s,(,u3-PhCCHO)(CO&, (17%) which 
was -believed incorrectly [1,2] to have structure 2b while present evidence 
favours structure 2a. The v(C0) spectrum is very similar to that of 3 derived 
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*No reprints available. 
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from phenol [3] (the X-ray structure of the 2-benzyl-substituted compound has 
been determined [2]) and the absorptions at 1497 cm-’ and 6 11.27 (singlet) 
for the CHO group in the infrared and ‘H NMR spectra ah support 2a. Thus 2 is 
fcrmed by removal of both hydrogen atoms from the (Y-CH, group even though 
the aldehydic H is first transferred (Scheme 1). Vinyloxo complexes have been 
isolated [I]+, but the proposed intermediate in this case was not isolated or even 
detected. 

oscco~, 
PhCH2CH0 /H\ 

Os,KO),, > Ko),o~~osKo), * 
\ I 
,c=o 

PhCHz H&C3 [CO), 

(1) 
\ 
Ph (2) 

SCHEME 1 

Ketones give analogues of 2 and 3 but these must be formed by a different 
route to that for complexes of type 2, Thus cyclohexanone reacts with OS,(CO)~~ 
(refluxing dec,ane, 15 h) to give a poor yield of 4 (17%), the saturated form of 
complex 3. Attempting to form a cluster intermediate between 3 and 4 by reac- 
tion of Os,(CO),, with cyclohexenone (refluxing decane, 6 h) did not give 5 
(Scheme 2) but only a low yield of 4 (20%). The difficulty with these high- 
temperature reactions is the formation of many products of which perhaps only 
one can be purified and characterised and it is difficult to say anything about re- 
action paths leading to them. The more reactive H,OS~(CO)~~ allows the use of 
lower temperatures and reacts with cyclohexenone (refluxing hexane, 4 h) to give 
complex 6 as the major product (32%) and we presume by analo,gy with other re- 
actions of alkenes that cyclohexanone is a byproduct. Thus surprisingly oxidative 
addition occurs at the alkene rather than the more acidic or-CH2 group. The lack 
of v(C0) due to free ketone is consistent with the structure shown. An un- 
expected feature of the cluster chemistry of organic carbonyl compounds is the 
pronounced tendency towards coordination through oxygen so that 6 does not 
adopt a structure like that of HOs,@‘-CH=CH, )(CO),, , that is the carbonyl 
group effectively competes with the alkene function for coordin&.ion at osmium. 
Decarbonylation of 6 (refluxing octane, 2 h) quite remarkably gave complex 5 \ 
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TABLE 1 

SELECTEDINFRAREDAND'HNMRDATA" 

Compound u<CO)(metal-coordinated)(cm-') 6<0sH)(inCDCI,) Temperature ("C) 
@pm) 

1 2111m.2073s.2061s.2030s.2015s. -14.04s i-27 
2013w.2000m.1992<sh).1985m 

2 2113m.2087s.2059s.2027s.2017s. -11_79d.-13.88d -50 
2003s.1990m.1985m 

3 2112m.2086s.2057s.2034s.2027s. -11_66d.-14.06d -60 
2013s,2002s,1987<sh).1980m 

4 2105m.2080s.2051vs.2023s.2020(sh). -12_36d.-14.03d +27 
2010m.1998+.1979m 

5 2107m.2082s.2053vs.2024vs.2012m. -12.27d.-14.02d i-27 
2000s.1982m 

6 2106m.2067s.2053s..2024s.2010m. -12.84s i-27 
2003s.1995m.1984w.1977m 

7 2090m.2056s.2038s.2015m.1999s. -17.21s +27 
1982m.1969m 

aCompoundslto 7gavesatisfactoryelementalanalysesandthecomplete'HNMRdataareconsistentwith 
the formuIationsasgivenandwiIIbereported in fulllater. 

which is formed formally from cyclohexenone by a double oxidative addition of 
the a-CH2 group. In reality considerable rearrangement is necessary to obtain 5 
so we hesitate to suggest mechanisms for any of these oxidative additions. The 
co-product, complex 7, containing the same ligand es in 6 but presumably as a 
5e-donor, and possibly as shown, is isomeric with 5. Table 1 contains some of 
our evidence for these complexes as formulated but full details of these ketonic 
products and of those obtained from a range of acylic ketones will be given 
elsewhere. 
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